Pelagic zone is an evolutionary catalyst, but an ecological dead end, for North American minnows

Evolution. 2024 Apr 22:qpae062. doi: 10.1093/evolut/qpae062. Online ahead of print.

Abstract

Colonization of a novel geographic area is a classic source of ecological opportunity. Likewise, complex microhabitats are thought to promote biodiversity. We sought to reconcile these two predictions when they are naturally opposing outcomes. We assess the macroevolutionary consequences of an ancestral shift from benthic to pelagic microhabitat zones on rates of speciation and phenotypic evolution in North American minnows. Pelagic species have more similar phenotypes and slower rates of phenotypic evolution, but faster speciation rates, than benthic species. These are likely two independent, opposing responses to specialization along the benthic-pelagic axis, as rates of phenotypic evolution and speciation are not directly correlated. The pelagic zone is more structurally homogenous and offers less ecological opportunity, acting as an ecological dead end for minnows. In contrast, pelagic species may be more mobile and prone to dispersal and subsequent geographic isolation and, consequently, experience elevated instances of allopatric speciation. Microhabitat shifts can have decoupled effects on different dimensions of biodiversity, highlighting the need for nuance when interpreting the macroevolutionary consequences of ecological opportunity.

Keywords: Continental radiation; ecological opportunity; macroevolution; morphological evolution; niche; speciation.