Anthelmintic and therapeutic effects of the biogenic zinc oxide nanoparticles against acute kidney injury induced by Parascaris equorum Infection in rats

J Parasit Dis. 2024 Mar;48(1):14-24. doi: 10.1007/s12639-023-01637-z. Epub 2023 Nov 24.

Abstract

Complications of parasite infections, especially kidney disease, have been linked to poorer outcomes. Acute kidney damage, glomerulonephritis, and tubular dysfunction are the most prevalent renal consequences of Parascaris equorum infection. The purpose of this study was to determine the pharmacological effects of green-produced zinc oxide nanoparticles (ZnO NPs) on P. equorum infection in male Wistar rats. Thirty-six male rats were divided into two groups of 18 each: infected and non-infected. Both groups were separated into three subgroups, each of which received distilled water, 30 mg/kg ZnO NPs, and 60 mg/kg ZnO NPs. After 10 days of ZnO NPs administration, four larvae per gram of kidney tissue were present in the untreated infected group. While, no larvae were present in ZnO NPs (30 mg/kg) treated group, and one larva/g.tissue was present in ZnO NPs (60 mg/kg) treated group compared to untreated infected animals. P. equorum infected rats had increased kidney biomarkers (creatinine, urea, uric acid), malondialdehyde, and nitric oxide, with a significant decrease in their antioxidant systems. On the other hand, infected treated rats with green-produced zinc oxide nanoparticles had a substantial drop in creatinine, urea, uric acid, malondialdehyde, and nitric oxide, as well as a significant rise in their antioxidant systems. P. equorum infection in rats caused severe degenerative and necrotic renal tissues. On the other hand, there were no detectable histopathological alterations in rats treated with ZnO NPs (30, 60 mg/kg) as compared to the infected untreated animals. When compared to infected untreated mice, immunohistochemical examination of nuclear factor-kappa B showed a significant decrease during treatment with ZnO NPs (30, 60 mg/kg). Green-produced zinc oxide nanoparticles are a viable therapeutic strategy for Parascaris equorum infection due to their potent anthelmintic activity, including a significant decrease in larval burden in infected treated rats.

Keywords: Anthelmintic; Larvae; Nanoparticles; Parascaris equorum.