Alterations in the diversity, composition and function of the gut microbiota in Uyghur individuals with sarcopenia

Exp Gerontol. 2024 Mar:187:112376. doi: 10.1016/j.exger.2024.112376. Epub 2024 Feb 10.

Abstract

Background: Research on the gut microbiota has emerged as a new direction for understanding pathophysiologic changes in diseases associated with aging, such as sarcopenia. Several studies have shown that there are differences in the gut microbiota between individuals with sarcopenia and without sarcopenia. However, these differences are not consistent across regions and ethnic groups, and additional research is needed.

Methods: In this study, we collected fresh fecal samples from 31 Uyghur individuals with sarcopenia and 31 healthy controls. We used 16S rRNA sequencing to obtain fecal base sequences and analyzed the diversity, composition and function of the gut microbiota.

Results: There was no significant difference in alpha diversity between the sarcopenia group and the healthy control group (P > 0.05). There was a significant difference in beta diversity between the groups (P < 0.05). In the sarcopenia group, the abundances of Alloprevotella, un_f_Prevotellaceae, Anaerovibrio, Prevotellaceae_NK3B31_group, Mitsuokella, Prevotella and Allisonella were lower than those in the heathy control group, and the abundances of Flavobacteriales, Flavobacteriaceae, Catenibacterium, Romboutsia, Erysipelotrichaceae_UCG-003, GCA-900066575, Lachnospiraceae_FCS020_group, and un_f_Flavobacteriaceae were higher than those in the heathy control group. Linear discriminant analysis effect size (LEfSe) revealed that the microbial species in the control group that were significantly different from those in the sarcopenia group were concentrated in the genus Alloprevotella, while the species in the sarcopenia group were concentrated in the genus Catenibacterium. Functional prediction analysis revealed that D-alanine, glycine, serine, and threonine metabolism and transcription machinery, among others, were enriched in the sarcopenia group, which indicated that metabolic pathways related to amino acid metabolism and nutrient transport may be regulated to varying degrees in the pathophysiological context of sarcopenia.

Conclusions: There were significant differences in the composition and function of the gut microbiota between Xinjiang Uyghur sarcopenia individuals and healthy individuals. These findings might aid in the development of probiotics or microbial-based therapies for sarcopenia in Uyhur individuals.

Keywords: Gut microbiota; Muscle mass; Sarcopenia; Xinjiang Uyghur.

MeSH terms

  • Aging
  • Bacteroidetes
  • Gastrointestinal Microbiome*
  • Humans
  • RNA, Ribosomal, 16S / genetics
  • Sarcopenia*

Substances

  • RNA, Ribosomal, 16S