Versatile Polymerization-Induced Emission Polymers from Barbier Polymerization of Cinnamic Esters with Tunable Emission

Chemistry. 2024 Apr 5;30(20):e202400045. doi: 10.1002/chem.202400045. Epub 2024 Feb 19.

Abstract

Cinnamic ester is a common and abundant chemical substance, which can be extracted from natural plants. Compared with traditional esters, cinnamic ester contains α,β-unsaturated carbonyl structure with multiple reactive sites, resulting in more abundant reactivities and chemical structures. Here, a versatile polymerization-induced emission (PIE) is successfully demonstrated through Barbier polymerization of cinnamic ester. Attributed to its abundant reactivities of α,β-unsaturated carbonyl structure, Barbier polymerization of cinnamic esters with different organodihalides gives polyalcohol and polyketone via 1,2-addition and 1,4-addition, respectively, which is also confirmed by small molecular model reactions. Meanwhile, these organodihalides dependant polyalcohol and polyketone exhibit different non-traditional intrinsic luminescence (NTIL) from aggregation-induced emission (AIE) type to aggregation-caused quenching (ACQ) type, where novel PIE luminogens (PIEgens) are revealed. Further potential applications in explosive detection are carried out, where it achieves TNT detection sensitivity at ppm level in solution and ng level on the test paper. This work therefore expands the structure and functionality libraries of monomer, polymer and NTIL, which might cause inspirations to different fields including polymer chemistry, NTIL, AIE and PIE.

Keywords: Aggregation-induced emission; Barbier polymerization; Cinnamic easter; One pot; Polymerization-induced emission.