Opening Direct Electrochemical Fischer-Tropsch Synthesis Path by Interfacial Engineering of Cu Electrode with P-Block Elements

ACS Appl Mater Interfaces. 2024 Jan 24;16(3):3368-3387. doi: 10.1021/acsami.3c15596. Epub 2024 Jan 12.

Abstract

The electrochemical synthesis of syngas (CO and H2) has garnered considerable attention in the context of Fischer-Tropsch (FT) synthesis employing thermal catalysts. Nonetheless, the need for a novel, cost-effective technique persists. In this investigation, we introduce a direct electrochemical (dEC) approach for FT synthesis that functions under ambient conditions by utilizing a p-block element (Sn and In) overlaid Cu electrode. Surface *CO and H* species were obtained in an electrolytic medium through the CO2 + H+ + e- → HOOCad → *CO (or direct CO adsorption) and H+ + e- → H* reactions, respectively. We have observed C2-7 long-chain hydrocarbons with a CnH2n+2/CnH2n ratio of 1-3, and this observation can be explained through the process of C-C coupling chain growth of the conventional FT synthesis, based on the linearity of the Anderson-Schulz-Flory equation plots. Thick Sn and In overlayers resulted in the dominant production of formate, while CO and C2H4 production were found to be proportional and inversely correlated to H2, C2H6, and C3-7 hydrocarbon production. The EC CO2/CO reduction used in dEC FT synthesis offers valuable insights into the mechanism of C2+ production and holds promise as an eco-friendly approach to producing long-chain hydrocarbons for energy and environmental purposes.

Keywords: C−C coupling chain growth; Fischer−Tropsch synthesis; In/Cu; Sn/Cu; electrochemical CO reduction; electrochemical CO2 reduction.