Mechanism for transmission and pathogenesis of carbapenem-resistant Enterobacterales harboring the carbapenemase IMP and clinical countermeasures

Microbiol Spectr. 2024 Feb 6;12(2):e0231823. doi: 10.1128/spectrum.02318-23. Epub 2024 Jan 10.

Abstract

Carbapenem-resistant Enterobacterales (CRE) are some of the most important pathogens causing infections, which can be challenging to treat. We identified four blaIMP-carrying CRE isolates and collected clinical data. The transferability and stability of the plasmid were verified by conjugation, successive passaging, and plasmid elimination assays. The IncC blaIMP-4-carrying pIMP4-ECL42 plasmid was successfully transferred into the recipient strain, and the high expression of traD may have facilitated the conjugation transfer of the plasmid. Interestingly, the plasmid showed strong stability in clinical isolates. Whole-genome sequencing was performed on all isolates. We assessed the sequence similarity of blaIMP -harboring plasmid from our institution and compared it to plasmids for which sequence data are publicly available. We found that four blaIMP-carrying CRE belonged to four different sequence types. The checkerboard technique and time-kill assays were used to investigate the best antimicrobial therapies for blaIMP-carrying CRE. The time-kill assay showed that the imipenem of 1× minimum inhibitory concentration (MIC) alone had the bactericidal or bacteriostatic effect against IMP-producing strains at 4-12 h in vitro. Moreover, the combination of tigecycline (0.5/1/2 × MIC) and imipenem (0.5/1 × MIC) showed a bactericidal effect against the blaIMP-26-carrying CRECL60 strain.IMPORTANCECarbapenem-resistant Enterobacterales (CRE) are an urgent public health threat, and infections caused by these microorganisms are often associated with high mortality and limited treatment options. This study aimed to determine the clinical features, molecular characteristics, and plasmid transmissible mechanisms of blaIMP carriage as well as to provide a potential treatment option. Here, we demonstrated that conjugated transfer of the IncC blaIMP-4-carrying plasmid promotes plasmid stability, so inhibition of conjugated transfer and enhanced plasmid loss may be potential ways to suppress the persistence of this plasmid. The imipenem alone or tigecycline-imipenem combination showed a good bactericidal effect against IMP-producing strains. In particular, our study revealed that imipenem alone or tigecycline-imipenem combination may be a potential therapeutic option for patients who are infected with IMP-producing strains. Our study supports further trials of appropriate antibiotics to determine optimal treatment and emphasizes the importance of continued monitoring of IMP-producing strains in the future.

Keywords: IMP; bactericidal effect; carbapenem-resistant Enterobacterales; imipenem; tigecycline; traD.

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Bacterial Proteins* / genetics
  • Humans
  • Imipenem / pharmacology
  • Microbial Sensitivity Tests
  • Plasmids
  • Tigecycline
  • beta-Lactamases* / genetics

Substances

  • carbapenemase
  • Tigecycline
  • Bacterial Proteins
  • beta-Lactamases
  • Anti-Bacterial Agents
  • Imipenem