Development of a low-cost, compact, wireless, 16 - channel biopotential data acquisition, signal conditioning and arbitrary waveform stimulator

Biomed Phys Eng Express. 2024 Jan 4;10(2). doi: 10.1088/2057-1976/ad17a8.

Abstract

The health and fitness of the human body rely heavily on physiological parameters. These parameters can be measured using various tools such as ECG, EMG, EEG, EOG, among others, to obtain real-time physiological data. Analysing the bio-signals obtained from these measurements can provide valuable information that can be used to improve health-care in terms of observation, diagnosis, and treatment. In bio-signal pattern recognition applications, more channels provide multiple information simultaneously. Different biosignal acquisition devices are available in the market, most of which are designed for specific signals like ECG, EMG, EEG etc The gain of the amplifiers and frequency of the filters are designed as per the targeted signals; due to which one device cannot be used for other signals. Also, most of the systems are wired system which is not comfortable for animal studies. In this paper, a low-cost, compact, wireless, 16 channel biopotential data acquisition system with integrated electrical stimulator is designed and implemented. There are several novel and flexible design approaches were incorporated in the proposed design like (1) It has user selectable digital filter in each channel based on the signal frequencies like ECG, EMG, EEG, EOG. The same system will be used to acquire different signals simultaneously. (2) It has variable gain with a configurable analog bandpass filter. (3) It can acquire signals from 4 patients simultaneously. (4) The system is capable to acquire signal from both two-electrode as well as three-electrode configurations. (5) It has integrated stimulator with trapezoidal, charge-balanced, biphasic stimulus output with near zero DC level and user selectable pulse duration or frequency of the stimulus. The developed system has the ability to acquire and transmit data wirelessly in real-time at a high transfer rate. To validate the performance of the system, tests were conducted on the acquired signals using a simulator.

Keywords: biopotential; data acquisition; portable; stimulator; wireless.

MeSH terms

  • Amplifiers, Electronic*
  • Animals
  • Electrodes
  • Humans