Hand Grasp Motion Intention Recognition Based on High-Density Electromyography in Chronic Stroke Patients

Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul:2023:1-4. doi: 10.1109/EMBC40787.2023.10340346.

Abstract

Stroke is a debilitating condition that leads to a loss of motor function, inability to perform daily life activities, and ultimately worsening quality of life. Robot-based rehabilitation is a more effective method than conventional rehabilitation but needs to accurately recognize the patient's intention so that the robot can assist the patient's voluntary motion. This study focuses on recognizing hand grasp motion intention using high-density electromyography (HD-EMG) in patients with chronic stroke. The study was conducted with three chronic stroke patients and involved recording HD-EMG signals from the muscles involved in hand grasp motions. The adaptive onset detection algorithm was used to accurately identify the start of hand grasp motions accurately, and a convolutional neural network (CNN) was trained to classify the HD-EMG signals into one of four grasping motions. The average true positive and false positive rates of the grasp onset detection on three subjects were 91.6% and 9.8%, respectively, and the trained CNN classified the grasping motion with an average accuracy of 76.3%. The results showed that using HD-EMG can provide accurate hand grasp motion intention recognition in chronic stroke patients, highlighting the potential for effective robot-based rehabilitation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electromyography / methods
  • Hand Strength / physiology
  • Hand* / physiology
  • Humans
  • Intention
  • Quality of Life
  • Stroke* / complications
  • Stroke* / diagnosis