Isolation and characterization of Pinibacter soli sp. nov., and in silico genome mining of Pinibacter for biosynthetic gene cluster prediction

Int J Syst Evol Microbiol. 2023 Nov;73(11). doi: 10.1099/ijsem.0.006136.

Abstract

A Gram-stain-negative, aerobic, rod-shaped, non-motile and non-flagellated novel bacterial strain, designated MAH-24T, was isolated from the rhizospheric soil of a pine garden. The colonies were observed to be orange-coloured, smooth, spherical and 0.4-0.8 mm in diameter when grown on Reasoner's 2A agar medium for 2 days. Strain MAH-24T was found to be able to grow at 10-35 °C, at pH 6.0-9.0 and in the presence of 0-1.0 % NaCl (w/v). The strain was found to be positive for the catalase and oxidase tests. The strain was positive for hydrolysis of aesculin and l-tyrosine. According to the 16S rRNA gene sequence comparisons, the isolate was identified as a member of the genus Pinibacter and to be closely related to Pinibacter aurantiacus MAH-26T (99.2 % sequence similarity). The novel strain MAH-24T has a draft genome size of 5 918 133 bp (13 contigs), annotated with 4613 protein-coding genes, 47 tRNA and three rRNA genes. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain MAH-24T and the closest type strain P. aurantiacus MAH-26T were in the range of 85.3 and 29.9 %, respectively. In silico genome mining revealed that both novel strain MAH-24T and P. aurantiacus MAH-26T have a significant potential for the production of novel natural products in the future. The genomic DNA G+C content was determined to be 41.0 mol%. The predominant isoprenoid quinone was menaquinone-7. The major fatty acids were identified as C15:0 iso, C15:1 iso G and C17:0 iso 3OH. On the basis of dDDH, ANI, genotypic, chemotaxonomic and physiological data, strain MAH-24T represents a novel species within the genus Pinibacter, for which the name Pinibacter soli sp. nov. is proposed, with MAH-24T (=KACC 19747T=CGMCC 1.13659T) as the type strain.

Keywords: Pinibacter soli; digital DNA–DNA hybridization; genome sequence; in silico genome mining; secondary metabolites.

MeSH terms

  • Bacterial Typing Techniques
  • Base Composition
  • DNA, Bacterial / genetics
  • Fatty Acids* / chemistry
  • Multigene Family
  • Phylogeny
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA
  • Soil Microbiology*

Substances

  • Fatty Acids
  • RNA, Ribosomal, 16S
  • DNA, Bacterial