Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Physiol Behav. 1986;38(1):57-65.

Joint cholinergic-serotonergic control of neocortical and hippocampal electrical activity in relation to behavior: effects of scopolamine, ditran, trifluoperazine and amphetamine.

Abstract

Previous research has indicated that low voltage fast activity (LVFA) in the neocortex and rhythmical slow activity (RSA) in the hippocampus can result from activity in either (or both) the cholinergic corticipetal projections from the basal forebrain and the serotonergic corticipetal projections from the brainstem raphe. These inputs appear to give rise, respectively, to atropine-sensitive LVFA and RSA and atropine-resistant LVFA and RSA. The atropine-sensitive and atropine-resistant waveforms have been shown to have distinctive behavioral correlates. The present experiments extend these findings by providing dose-response data on the effects of scopolamine and Ditran on neocortical activity in relation to behavior in the rat. In addition, new evidence is presented which indicates that neuroleptic drugs reduce activity in the atropine-resistant (presumably serotonergic) inputs to the hippocampus and neocortex by an indirect action involving dopamine receptors. A single dose of d-amphetamine or apomorphine appears to increase activity in the same pathway by a similar indirect action. These findings may be relevant to the psychiatric effects of neuroleptic drugs.

PMID:
3786502
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk