Copper complexes for the chemoselective N-arylation of arylamines and sulfanilamides via Chan-Evans-Lam cross-coupling

Dalton Trans. 2023 Nov 7;52(43):15986-15994. doi: 10.1039/d3dt02659k.

Abstract

Copper(II) complexes with tridentate NNN-ligands were utilized for Chan-Evans-Lam (CEL) cross-coupling reactions to enable the N-arylation of multifarious N-nucleophiles through the activation of aryl boronic acids. A condition-specific methodology was developed to chemoselectively target the amine versus sulfonamide N-arylation of 4-aminobenzenesulfonamide using new catalysts. Two different pyridine-based ligands and corresponding copper(II) complexes were characterized using 1H and 13C-NMR, FTIR, and UV-vis spectroscopy, HRMS, single-crystal X-ray diffraction, and cyclic voltammetry. Solvent and base-controlled cross-coupling reactions were observed, which led to the optimization of selective conditions for targeted C-N bond formation of sulfanilamides. Beyond the chemoselective processes reported here, a breadth of N-nucleophiles including sulfanilamides and arylamines were screened for arylation by this CEL catalyst.