A novel DBD/VUV/PMS process for efficient sulfadiazine degradation in wastewater: Singlet oxygen-dominated nonradical oxidation

J Hazard Mater. 2024 Jan 5:461:132650. doi: 10.1016/j.jhazmat.2023.132650. Epub 2023 Sep 28.

Abstract

In this study, a novel process of dielectric barrier discharge plasma/vacuum ultraviolet/peroxymonosulfate (DBD/VUV/PMS) for the nonradical-dominated degradation of sulfadiazine (SDZ) was investigated. The hybrid system has significant synergistic effects, with 95.5% SDZ and 68.3% TOC removal within 10 min. The activation efficiency of DBD/VUV (69.0%) on PMS via multipath was 2.07 times higher than that of single DBD (33.3%) under alkaline conditions. Electron paramagnetic resonance analyses and trapping experiments showed 1O2 was the primary active substance in the DBD/VUV/PMS process. The predominant role of 1O2 revealed that SDZ removal mainly followed the nonradical reaction pathway, contrary to the previously reported non-thermal plasma (NTP)-based radical-dominated process. Multiple spectroscopy analysis showed the efficient degradation process of SDZ. Unlike the radical attack sites, the SDZ transformation pathway by nonradical 1O2 was probably initiated by an aniline ring site attack based on density functional theory (DFT) calculations and product analyses. The DBD/VUV/PMS process reduced energy consumption by 69% compared to DBD. Finally, the evaluation of ecotoxicity and PMS utilization demonstrated the advantages and application prospects of the DBD/VUV/PMS process. This research developed a new nonradical-dominated pathway for antibiotic degradation by the photo/plasma/persulfate process.

Keywords: Antibiotic wastewater; DBD plasma; Mineralization; Peroxymonosulfate; Singlet oxygen.