Oxygen Vacancy-Tailored Schottky Heterojunction Activates Interface Dipole Amplification and Carrier Inversion for High-Performance Potassium-Ion Batteries

Small. 2023 Dec;19(52):e2305342. doi: 10.1002/smll.202305342. Epub 2023 Aug 27.

Abstract

An oxygen vacancy-tailored Schottky heterostructure composed of polyvinylpyrrolidone-assisted Bi2 Sn2 O7 (PVPBSO) nanocrystals and moderate work function graphene (mWFG, WF = 4.36 eV) is designed, which in turn intensifies the built-in voltage and interface dipole across the space charge region (SCR), leading to the inversion of majority carriers for facilitating K+ transport/diffusion behaviors. Thorough band-alignment experiments and interface simulations reveal the dynamics between deficient BSO and mWFG, and how charge redistribution within the SCR leads to carrier inversion, demonstrating the impact of different defect engineering degrees on the amplification of Schottky junctions. The ordered transport of bipolar carriers can boost electrons and K ions easily passing through the inner and outer surfaces of the heterostructure. With high activity and low resistance in electrochemical reactions, the PVPBSO/mWFG exhibits an attractive capacity of 430 mA h g-1 and a rate capability exceeding 2000 mA g-1 , accompanied by minimal polarization and efficient utilization of conversion-alloying reactions. The substantial cell capacity and high-redox plateau of PVPBSO/mWFG//PB contribute to the practical feasibility of high-energy full batteries, offering long-cycle retention and high-voltage output. This study emphasizes the direct importance of interface and junction engineering in improving the efficiency of diverse electrochemical kinetic and diffusion processes for potassium-ion batteries.

Keywords: Schottky junction; heterostructures; oxygen vacancy; potassium-ion batteries.