Wing Kinematics-Based Flight Control Strategy in Insect-Inspired Flight Systems: Deep Reinforcement Learning Gives Solutions and Inspires Controller Design in Flapping MAVs

Biomimetics (Basel). 2023 Jul 7;8(3):295. doi: 10.3390/biomimetics8030295.

Abstract

Flying insects exhibit outperforming stability and control via continuous wing flapping even under severe disturbances in various conditions of wind gust and turbulence. While conventional linear proportional derivative (PD)-based controllers are widely employed in insect-inspired flight systems, they usually fail to deal with large perturbation conditions in terms of the 6-DoF nonlinear control strategy. Here we propose a novel wing kinematics-based controller, which is optimized based on deep reinforcement learning (DRL) to stabilize bumblebee hovering under large perturbations. A high-fidelity Open AI Gym environment is established through coupling a CFD data-driven aerodynamic model and a 6-DoF flight dynamic model. The control policy with an action space of 4 is optimized using the off-policy Soft Actor-Critic (SAC) algorithm with automating entropy adjustment, which is verified to be of feasibility and robustness to achieve fast stabilization of the bumblebee hovering flight under full 6-DoF large disturbances. The 6-DoF wing kinematics-based DRL control strategy may provide an efficient autonomous controller design for bioinspired flapping-wing micro air vehicles.

Keywords: deep reinforcement learning; flight dynamics; insect flight; stabilization control; unsteady aerodynamics.