Double network structure via ionic bond and covalent bond of carboxymethyl chitosan and poly(ethylene glycol): Factors affecting hydrogel formation

Carbohydr Polym. 2023 Oct 15:318:121130. doi: 10.1016/j.carbpol.2023.121130. Epub 2023 Jun 21.

Abstract

The factors were studied that affect the formation of DN hydrogel, which was prepared using a water-based, environmental-friendly system. The DN hydrogel was designed and prepared based on a cross-linked, polysaccharide-based, polymer carboxymethyl chitosan (CMCS) via an ionic crosslinking reaction for the first network structure. UV irradiation created a radical crosslinking reaction of poly(ethylene glycol) from a double bond at the chain end for the second network structure. It was found that the optimum hydrogel was produced using 9.5 %v/v of 1000PEGGMA, CMCS 5%w/v, and CaCl2 3%w/v. The results showed the highest percentage of the gel fraction was 87.84 % and the hydrogel was stable based on its rheological properties. Factors affecting the hydrogel formation were the concentration and molecular weight of PEGGMA and the concentrations of CMCS and calcium chloride (CaCl2). The DN hydrogel had bioactivity due to its octacalcium phosphate (OCP) hydroxyapatite crystal form. In addition, the composite DN scaffold with a conductive polymer of chitosan-grafted-polyaniline (CS-g-PANI) had conduction of 2.33 × 10-5 S/cm when the concentration of CS-g-PANI was 3 mg/ml, confirming the semi-conductive nature of the material. All the results indicated that DN hydrogel could be a candidate to apply in tissue-engineering applications.

Keywords: Carboxymethyl chitosan; Double network hydrogel; Formation factors; Poly(ethylene glycol); Tissue engineering.