Catalysis of intermolecular oxygen atom transfer by nitrite dehydrogenase of Nitrobacter agilis

J Biol Chem. 1986 Aug 15;261(23):10538-43.

Abstract

Nitrobacter agilis, which contains a very active nitrite dehydrogenase, was studied in vivo under anaerobic conditions by the 15N NMR technique. When incubated with equimolar 15NO3- and unlabeled nitrite (or 15NO2- and unlabeled nitrate) the bacterium catalyzed an isotope exchange reaction at rates about 10% those observed in the nitrite oxidase assay. When incubated with 18O-labeled 15NO2- and 18O-labeled 15NO3-, the 18O was observed to exchange at similar rates from both species into water. Finally, when incubated with equimolar [18O]nitrate and 15NO2-, intermolecular 18O transfer was observed to result in formation of double labeled nitrate and nitrite at similar rates. 18O was transferred from nitrate to a 15N species or to water at approximately equal rates under the conditions of the experiments. It is argued that the enzyme responsible for these exchange reactions is nitrite dehydrogenase and not nitrate reductase. This work and the related experiments of DiSpirito and Hooper (DiSpirito, A.A., and Hooper, A.B. (1986) J. Biol. Chem. 261, 10534-10537) represent the first demonstrations of intermolecular oxygen atom transfer among oxotransferases. Mechanistic implications are discussed.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Kinetics
  • Magnetic Resonance Spectroscopy / methods
  • Nitrates / metabolism
  • Nitrites / metabolism
  • Nitrobacter / enzymology*
  • Nitrogen Isotopes
  • Oxidoreductases / metabolism*

Substances

  • Nitrates
  • Nitrites
  • Nitrogen Isotopes
  • Oxidoreductases
  • nitrite dehydrogenase