Facile Synthesis of Vanadium Oxide/Carbon Spheres-Doped Nickel Oxide Functioned as a Nanocatalyst and Bactericidal Behavior with Molecular Docking Analysis

ACS Omega. 2023 May 22;8(22):19474-19485. doi: 10.1021/acsomega.3c00604. eCollection 2023 Jun 6.

Abstract

Vanadium oxide (V2O5) and carbon spheres (Cs)-doped NiO2 nanostructures (NSs) were prepared using the co-precipitation approach. Several spectroscopic and microscopic techniques, including X-ray diffraction (XRD), UV-vis, FTIR, TEM, and HR-TEM investigations, were used to describe the as-synthesized NSs. The XRD pattern exhibited the hexagonal structure, and the crystallite size of pristine and doped NSs was calculated as 29.3, 32.8, 25.79, and 45.19 nm, respectively. The control sample (NiO2) showed maximum absorption at 330 nm, and upon doping, a redshift was observed, leading to decreased band gap energy from 3.75 to 3.59 eV. TEM of NiO2 shows agglomerated nonuniform nanorods exhibited with various nanoparticles without a specific orientation; a higher agglomeration was observed upon doping. The (4 wt %) V2O5/Cs-doped NiO2 NSs served as superior catalysts with a 94.21% MB reduction in acidic media. The significant antibacterial efficacy was estimated against Escherichia coli by measuring the zone of inhibition (3.75 mm). Besides their bactericidal analysis, V2O5/Cs-doped NiO2 was shown to have a binding score of 6.37 for dihydrofolate reductase and a binding score of 4.31 for dihydropteroate synthase in an in silico docking study of E. coli.