Carbon electrochemical membrane functionalized with flower cluster-like FeOOH catalyst for organic pollutants decontamination

J Colloid Interface Sci. 2023 Jun 15:640:588-599. doi: 10.1016/j.jcis.2023.02.135. Epub 2023 Mar 2.

Abstract

Decorating active catalysts on the reactive electrochemical membrane (REM) is an effective way to further improve its decontamination performance. In this work, a novel carbon electrochemical membrane (FCM-30) was prepared through coating FeOOH nano catalyst on a low-cost coal-based carbon membrane (CM) through facile and green electrochemical deposition. Structural characterizations demonstrated that the FeOOH catalyst was successfully coated on CM, and it grew into a flower cluster-like morphology with abundant active sites when the deposition time was 30 min. The nano FeOOH flower clusters can obviously boost the hydrophilicity and electrochemical performance of FCM-30, which enhance its permeability and bisphenol A (BPA) removal efficiency during the electrochemical treatment. Effects of applied voltages, flow rates, electrolyte concentrations and water matrixes on BPA removal efficiency were investigated systematically. Under the operation condition of 2.0 V applied voltage and 2.0 mL·min-1 flow rate, FCM-30 can achieve the high removal efficiency of 93.24% and 82.71% for BPA and chemical oxygen demand (COD) (71.01% and 54.89% for CM), respectively, with only a low energy consumption (EC) of 0.41 kWh·kgCOD-1, which can be ascribed to the enhancement on OH yield and direct oxidation ability by the FeOOH catalyst. Moreover, this treatment system also exhibits good reusability and can be adopted on different water background as well as different pollutants.

Keywords: Carbon electrochemical membrane; Flower cluster-like FeOOH catalyst; Organic pollutants; Water decontamination.