Vapor-Phase Indium Intercalation in van der Waals Nanofibers of Atomically Thin W6Te6 Wires

ACS Nano. 2023 Mar 28;17(6):5561-5569. doi: 10.1021/acsnano.2c10997. Epub 2023 Feb 23.

Abstract

One-dimensional (1D) conducting materials are of great interest as potential building blocks for integrated nanocircuits. Ternary 1D transition-metal chalcogenides, consisting of M6X6 wires with intercalated A atoms (M = Mo or W; X = S, Se, or Te; A = alkali or rare metals, etc.), have attracted much attention due to their 1D metallic behavior, superconductivity, and mechanical flexibility. However, the conventional solid-state reaction usually produces micrometer-scale bulk crystals, limiting their potential use as nanoscale conductors. Here we demonstrate a versatile method to fabricate indium (In)-intercalated W6Te6 (In-W6Te6) bundles with a nanoscale thickness. We first prepared micrometer-long, crystalline bundles of van der Waals W6Te6 wires using chemical vapor deposition and intercalated In into the crystal via a vapor-phase reaction. Atomic-resolution electron microscopy revealed that In atoms were surrounded by three adjacent W6Te6 wires. First-principles calculations suggested that their wire-by-wire stacking can transform through postgrowth intercalation. Individual In-W6Te6 bundles exhibited metallic behavior, as theoretically predicted. We further identified the vibrational modes by combining polarized Raman spectroscopy and nonresonant Raman calculations.

Keywords: angle-resolved polarized Raman spectroscopy; intercalation; nanowire; one-dimensional van der Waals material; transition metal chalcogenide.