Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Int J Radiat Oncol Biol Phys. 1987 Dec;13(12):1851-5.

Size dependent changes in tumor phosphate metabolism after radiation therapy as detected by 31P NMR spectroscopy.

Author information

  • 1Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10021.

Abstract

In Vivo 31P NMR spectroscopy was used to study changes in phosphate metabolism that occur after irradiation of the C3H fibrosarcoma, FSaII. Previously, we have shown that small FSaII tumors (less than 250 mm3) have a greater phosphocreatinine/inorganic phosphate (PCr/Pi) ratio and a lower hypoxic cell fraction (HCF) than large FSaII tumors (greater than 250 mm3). Six small tumors (113 +/- 26 mm3) were treated with radiation doses chosen to induce local control in greater than 50% of animals, (70-100 Gy, single fraction). Minimal changes in the tumor 31P NMR spectrum were seen over eight days of monitoring. During this interval, tumor regression began a minimum of 36 hours after radiation. This contrasted with large tumors (650-1000 mm3) wherein a significant increase in the Pcr/Pi ratio was seen 44 hr after irradiation. In tumors of this size range, a tumor growth delay of 4 to 7 days is obtained after a single 70 Gy fraction of radiation. Since small FSaII tumors have a minimal HCF (approximately equal to 4%), radiation induced reoxygenation would not be expected to have a large effect on their average cellular metabolism. Large tumors of this histology have a high HCF (greater than or equal to 40%), and may therefore be expected to have a significant average change in tumor cell metabolism with reoxygenation. The 31P NMR observations of small and large tumors after irradiation are compatible with radiation induced reoxygenation in the larger tumors.

PMID:
3679923
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk