[Dissolved Ion Concentrations and Isotope Values in Agricultural Fertilizer Locally Applied in Henan Province]

Huan Jing Ke Xue. 2023 Feb 8;44(2):1040-1050. doi: 10.13227/j.hjkx.202201251.
[Article in Chinese]

Abstract

Agricultural fertilizers (AFs) have provided vegetation with necessary nutrients, but unabsorbed constituents have been retarded in soil, potentially affecting the quality of adjacent surface water and groundwater. AFs element contents and stable isotope compositions have often been utilized to assess and calculate AFs pollution to nitrate and sulfate in surface water and groundwater; however, due to various AFs applied, the dissolved ion concentrations and isotope ratios are still unknown. This study collected commercial AF widely utilized in Henan province, China, to constrain their ion concentrations and isotope values. The dissolved ions (1 g AFs dissolved in 1 L ultrapure water), sulfate sulfur, and oxygen isotope values(δ34S and δ18O) were analyzed, and total nitrogen (TN) contents coupled with nitrogen isotope values(δ15N) in solid AFs were determined to elucidate their elemental and isotopic compositions. These characteristics provided a scientific basis for further assessing their contributions to surface water and groundwater contaminations. The results indicated that pH values in the AFs solutions varied from 3.6 to 10.2, with a mean value of 6.7±1.5 (n=30, 1σ). Sulfate (SO42-) and nitrate (NO3-) concentrations ranged from 4.38 mg·L-1 to 827.29 mg·L-1 and from 1.34 mg·L-1 to 208.90 mg·L-1, with median values of 192.80 mg·L-1 and 13.51 mg·L-1 and average values of (256.19±239.83) mg·L-1 (n=30) and (37.07±53.21) mg·L-1 (n=29), respectively. Dissolved sulfate δ34S and δ18O values in AFs varied from -3.5‰ to 19.0‰ and from 6.7‰ to 18.5‰, with median values of 4.1‰ and 10.1‰ and mean values of (5.8±5.5)‰ (n=22, 1σ) and (10.7±2.7)‰ (n=22, 1σ), respectively. TN and δ15N values in AFs ranged from 0.5% to 38.9% and from -2.7‰ to 3.4‰, with median values of 13.3% and 0.0‰ and average values of (14.8±9.3)% (n=25) and 0.0±1.5‰ (n=24, 1σ), respectively. The lower averaged δ34S values and positive averaged δ18O values potentially resulted from sulfuric acids added as raw materials, giving rise to a negative relationship between pH values and SO42- concentrations (P<0.05). The δ15N values of AFs were close to that of air N2, corresponding to the fact that NO3--N and NH4+-N were synthesized via air N2. Our results revealed the dissolved ion concentrations of SO42-, NO3-, and NH4+ and their δ34S, δ18O, and δ15N values of typically applied AFs in Henan province, which provided the scientific basis for studying the AFs contributions to SO42- and NO3- pollutions in surface water and groundwater surroundings.

Keywords: agricultural fertilizers; nitrogen isotope; sulfate; sulfur and oxygen isotopes; water contamination.

Publication types

  • English Abstract