Tuning the luminescent properties of a three-dimensional perovskite ferroelectric (Me-Hdabco)CsI3via Sn(II) doping

Dalton Trans. 2023 Feb 28;52(9):2799-2803. doi: 10.1039/d2dt03939g.

Abstract

As promising functional materials, organic-inorganic hybrid metal halide perovskites have attracted significant interest because of their excellent photovoltaic performance. However, although considerable efforts have been made, three-dimensional (3D) metal halide perovskites beyond lead halides have been rarely reported. Herein, a new 3D organic-inorganic hybrid ferroelectric material (Me-Hdabco)CsI3 (1, Me-Hdabco = N-methyl-1,4-diazoniabicyclo[2.2.2]octane) was synthesized and characterized. 1 underwent a ferroelectric to paraelectric phase transition at Tc = 441 K, which was investigated by differential scanning calorimetry (DSC), dielectric measurements, and variable temperature structural analyses. Moreover, 1 shows a clear ferroelectric domain switching recorded by piezoelectric force microscopy. More interestingly, the pristine colorless crystal of 1 has no photoluminescence properties, while 10% Sn(II):(Me-Hdabco)CsI3 shows intense photoluminescence with a quantum yield of 8.90% under UV excitation. This finding will open up a new avenue to probe organic-inorganic hybrid multifunctional materials integrated ferroelectric and photoluminescence.