Design and Optimization of an Ultrathin and Broadband Polarization-Insensitive Fractal FSS Using the Improved Bacteria Foraging Optimization Algorithm and Curve Fitting

Nanomaterials (Basel). 2023 Jan 1;13(1):191. doi: 10.3390/nano13010191.

Abstract

A frequency-selective surface (FSS) optimization method combining a curve-fitting technique and an improved bacterial foraging optimization (IBFO) algorithm is proposed. In the method, novel Koch curve-like FSS and Minkowski fractal islands FSS were designed with a desired resonance center frequency and bandwidth. The bacteria foraging optimization (BFO) algorithm is improved to enhance the performance of the FSS. A curve-fitting technique is provided to allow an intuitive and numerical analysis of the correspondence between the FSS structural parameters and the frequency response. The curve-fitting results are used to evaluate the fitness function of the IBFO algorithm, replacing multiple repeated calls to the electromagnetic simulation software with the curve-fitting equation and thus speeding up the design process. IBFO is compared with the classical BFO algorithm, the hybrid BFO-particle swarm optimization algorithm (BSO), and the artificial bee colony algorithm (ABC) to demonstrate its superior performance. The designed fractal FSS is fabricated and tested to verify the experimental results. The simulation and measurement results show that the proposed FSS has a fractional bandwidth of 91.7% in the frequency range of 3.41-9.19 GHz (S, C, and X-bands). In addition, the structure is very thin, with only 0.025λ and 0.067λ at the lowest and highest frequencies, respectively. The proposed fractal FSS has shown stable performance for both TE and TM polarizations at oblique incidence angles up to 45°. according to simulations and measurements.

Keywords: curve fitting; fractal structure; frequency selective surface; improved bacteria foraging optimization.