Contaminant and nutrient concentrations of natural ingredient rat and mouse diet used in chemical toxicology studies

Fundam Appl Toxicol. 1987 Aug;9(2):329-38. doi: 10.1016/0272-0590(87)90055-8.

Abstract

The NIH-07 open formula natural ingredient rat and mouse ration is the standard diet for chemical toxicity and carcinogenicity studies conducted for the National Toxicology Program (NTP). Contaminant and nutrient concentrations were determined in 2 to 94 lots of this diet used in the NTP toxicology studies. All nutrient concentrations were equivalent to or greater than the requirements for rats and mice as set forth by the National Research Council. Aflatoxins, Hg, chlorinated hydrocarbons except methoxychlor, organophosphates except malathion, estrogenic activity, and Salmonella sp. were not present at the detectable levels. Fluorine, As, Cd, Pb, Se, N-nitrosodimethylamine, N-nitrosopyrrolidine, N-nitrosomorpholine, nitrate, nitrite, butylated hydroxyanisole, butylated hydroxytoluene, ethylene dibromide, methoxychlor, malathion, and trypsin inhibitor activity were present at or above the detectable levels. Five lots of diet had nitrosamine content of 100 to 273 ppb and 7 lots had 2.08 to 3.37 ppm of Pb. All other lots of NIH-07 diet used for NTP toxicology studies contained low levels of the contaminants. After determination of the contaminant concentrations in the 94 lots of diet and the contaminant concentrations in natural ingredients used in formulating NIH-07 diet, maximum allowable levels of contaminants were established and a flexible scoring system for acceptability of each lot of diet for chemical toxicology studies was developed. By prescreening ingredients such as fish meal for heavy metals and nitrosamines, and applying the flexible scoring system proposed, more than 95% of the lots of NIH-07 diet produced during the last 3 years had scores of greater than or equal to 95 out of 100 points and were considered acceptable for toxicology studies.

MeSH terms

  • Animal Feed / analysis*
  • Animals
  • Diet
  • Food Contamination / analysis*
  • Mice
  • Nutritive Value
  • Rats