Salicylic Acid Enhances Cadmium Tolerance and Reduces Its Shoot Accumulation in Fagopyrum tataricum Seedlings by Promoting Root Cadmium Retention and Mitigating Oxidative Stress

Int J Mol Sci. 2022 Nov 25;23(23):14746. doi: 10.3390/ijms232314746.

Abstract

Soil cadmium (Cd) contamination seriously reduces the production and product quality of Tartary buckwheat (Fagopyrum tataricum), and strategies are urgently needed to mitigate these adverse influences. Herein, we investigated the effect of salicylic acid (SA) on Tartary buckwheat seedlings grown in Cd-contaminated soil in terms of Cd tolerance and accumulation. The results showed that 75-100 µmol L-1 SA treatment enhanced the Cd tolerance of Tartary buckwheat, as reflected by the significant increase in plant height and root and shoot biomass, as well as largely mitigated oxidative stress. Moreover, 100 µmol L-1 SA considerably reduced the stem and leaf Cd concentration by 60% and 47%, respectively, which is a consequence of increased root biomass and root Cd retention with promoted Cd partitioning into cell wall and immobile chemical forms. Transcriptome analysis also revealed the upregulation of the genes responsible for cell wall biosynthesis and antioxidative activities in roots, especially secondary cell wall synthesis. The present study determines that 100 µmol L-1 is the best SA concentration for reducing Cd accumulation and toxicity in Tartary buckwheat and indicates the important role of root in Cd stress in this species.

Keywords: Tartary buckwheat; cadmium; chemical forms; salicylic acid; subcellular distribution; transcriptome analysis.

MeSH terms

  • Cadmium / toxicity
  • Fagopyrum* / genetics
  • Oxidative Stress
  • Salicylic Acid / pharmacology
  • Seedlings

Substances

  • Cadmium
  • Salicylic Acid