Impact of Konjac Glucomannan with Different Molecular Weight on Retrogradation Properties of Pea Starch

Gels. 2022 Oct 13;8(10):651. doi: 10.3390/gels8100651.

Abstract

The impact of konjac glucomannan (KGM) with different molecular weight (Mw) on the retrogradation properties of pea starch, such as color, viscoelasticity, gel strength, water holding capacity (WHC), moisture distribution and crystallinity, was investigated. At the same time as the Mw of KGM decreased, the lightness, elastic modulus, gel strength, water freedom and crystallinity of pea starch showed an increasing trend, whereas the viscosity modulus and WHC showed a decreasing trend. At one day of storage, compared with single pea starch, KGM with low Mw made gel strength increase from 40 g to 45 g, WHC decrease from 82% to 65% and crystallinity increase from 21.3% to 24.0%. Therefore, KGM with low Mw could promote retrogradation of pea starch in the short-term. At 7 days or even 14 days of storage, KGM with medium-high Mw had smaller indices than those of pure pea starch, including the lightness, storage modulus, gel strength, water freedom and crystallinity. This indicated that KGM with medium-high Mw could inhibit the long-term retrogradation of starch. The larger the Mw of KGM, the more noticeable the inhibition effect.

Keywords: crystallinity; konjac glucomannan; pea starch; retrogradation; water holding capacity.