Distinct spreading patterns induced by coexisting channels in information spreading dynamics

Chaos. 2022 Aug;32(8):083134. doi: 10.1063/5.0102380.

Abstract

In modern society, new communication channels and social platforms remarkably change the way of people receiving and sharing information, but the influences of these channels on information spreading dynamics have not been fully explored, especially in the aspects of outbreak patterns. To this end, based on a susceptible-accepted-recovered model, we examined the outbreak patterns of information spreading in a two-layered network with two coexisting channels: the intra-links within a layer and the inter-links across layers. Depending on the inter-layer coupling strength, i.e., average node degree and transmission probability between the two layers, we observed three different spreading patterns: (i) a localized outbreak with weak inter-layer coupling, (ii) two peaks with a time-delay outbreak appear for an intermediate coupling, and (iii) a synchronized outbreak for a strong coupling. Moreover, we showed that even though the average degree between the two layers is small, a large transmission probability still can compensate and promote the information spread from one layer to another, indicating by that the critical average degree decreases as a power law with transmission probability between the two layers. Additionally, we found that a large gap closed to the critical inter-layer average degree appears in the phase space of theoretical analysis, which indicates the emergence of a global large-scope outbreak. Our findings may, therefore, be of significance for understanding the outbreak behaviors of information spreading in real world.

MeSH terms

  • Disease Outbreaks*
  • Humans
  • Models, Theoretical*
  • Probability