Design and Preparation of Polyimide/TiO2@MoS2 Nanofibers by Hydrothermal Synthesis and Their Photocatalytic Performance

Polymers (Basel). 2022 Aug 9;14(16):3230. doi: 10.3390/polym14163230.

Abstract

Organic-inorganic nanocomposite fibers can avoid the agglomeration of single nanoparticles and reduce the cost (nanoparticles assembled on the surface of nanofibers), but also can produce new chemical, electrical, optical, and other properties, with a composite synergistic effect. Aromatic polyimide (PI) is a high-performance polymer with a rigid heterocyclic imide ring and an aromatic benzene ring in its macromolecular framework. Due to its excellent mechanical properties, thermal stability, and easy-to-adjust molecular structure, PI has been widely used in electronics, aerospace, automotive, and other industries related to many applications. Here, we report that TiO2 nanorods were grown on polyimide nanofibers by hydrothermal reaction, and MoS2 nanosheets were grown on TiO2 nanorods the same way. Based on theoretical analysis and experimental findings, the possible growth mechanism was determined in detail. Further experiments showed that MoS2 nanosheets were uniformly coated on the surface of TiO2 nanorods. The TiO2 nanorods have photocatalytic activity in the ultraviolet region, but the bandgap of organic/inorganic layered nanocomposites can redshift to visible light and improve their photocatalytic performance.

Keywords: TiO2, MoS2; nanofibers1; polyimide.