High-Performance Ternary Organic Solar Cells Enabled by Introducing a New A-DA'D-A Guest Acceptor with Higher-Lying LUMO Level

ACS Appl Mater Interfaces. 2022 Aug 17;14(32):36582-36591. doi: 10.1021/acsami.2c07883. Epub 2022 Aug 8.

Abstract

A ternary strategy is viable to minimize the trade-off between short-circuit current density (Jsc) and open-circuit voltage (Voc) in organic solar cells. Generally, the ternary OSCs can achieve a higher PCE than the binary counterparts by subtly utilizing the particular photoelectric properties of the third material. In this regard, we choose BTP-CC with a higher-lying LUMO level based on a fused TPBT (dithienothiophen[3.2-b]-pyrrolobenzothiadiazole) central framework and CC (2-(6-oxo-5,6-dihydro-4H-cyclopenta [b]thiophen-4-ylidene) malononitrile) flanking groups as the third component to broaden the light-absorption spectrum, regulate the bulk heterojunction (BHJ) morphology, improve the Voc, and reduce the charge recombination in OSCs. In addition, BTP-CC demonstrates intense intermolecular energy transfer to Y6 by fluorescence resonance energy transfer (FRET) pathway, which is due to the photoluminescence (PL) spectrum of BTP-CC covering the absorption region of Y6. The PM6:Y6:BTP-CC based ternary OSC achieves a champion PCE of 17.55%. Further investigation indicates that introduction of BTP-CC could reduce the trap states in OSCs, leading to an increased charge carrier density. Moreover, the incorporation of BTP-CC could improve the device stability. These results demonstrated that BTP-CC is important in improving the photovoltaic performance of ternary OSCs, and this work also provides a guideline for constructing ideal ternary OSCs in the future.

Keywords: Guest acceptor, Morphology; Photovoltaic performance; Stability; Ternary organic solar cells.