Magnetoencephalography Language Mapping Using Auditory Memory Retrieval and Silent Repeating Task

J Clin Neurophysiol. 2024 Feb 1;41(2):148-154. doi: 10.1097/WNP.0000000000000947. Epub 2022 May 4.

Abstract

Purpose: The study aims to (1) examine the spatiotemporal map of magnetoencephalography-evoked responses during an Auditory Memory Retrieval and Silent Repeating (AMRSR) task, and determine the hemispheric dominance for language, and (2) evaluate the accuracy of the AMRSR task in Wernicke and Broca area localization.

Methods: In 30 patients with brain tumors and/or epilepsies, the AMRSR task was used to evoke magnetoencephalography responses. We applied Fast VEctor-based Spatial-Temporal Analyses with minimum L1-norm source imaging method to the magnetoencephalography responses for localizing the brain areas evoked by the AMRSR task.

Results: The Fast-VEctor-based Spatial-Temporal Analysis found consistent activation in the posterior superior temporal gyrus around 300 to 500 ms, and another activation in the frontal cortex (pars opercularis and/or pars triangularis) around 600 to 900 ms, which were localized to the Wernicke area (BA 22) and Broca area (BA 44 and BA 45), respectively. The language-dominant hemispheric laterization elicited by the AMRSR task was comparable with the result from an Auditory Dichotic task result given to the same patient, with the exception that AMRSR is more sensitive on bilateral language laterization cases on finding the Wernicke and Broca areas.

Conclusions: For all patients who successfully finished the AMRSR task, Fast-VEctor-based Spatial-Temporal Analysis could establish accurate and robust localizations of Broca and Wernicke area and determine hemispheric dominance. For subjects with normal auditory functionality, the AMRSR paradigm evaluation showed significant promise in providing reliable assessments of cerebral language dominance and language network localization.

MeSH terms

  • Brain / physiology
  • Brain Mapping* / methods
  • Dominance, Cerebral / physiology
  • Humans
  • Language
  • Magnetic Resonance Imaging / methods
  • Magnetoencephalography* / methods