Antibiotic Therapy and Vaginal Microbiota Transplantation Reduce Endometriosis Disease Progression in Female Mice via NF-κB Signaling Pathway

Front Med (Lausanne). 2022 Mar 30:9:831115. doi: 10.3389/fmed.2022.831115. eCollection 2022.

Abstract

Endometriosis (EMS) is a disease characterized by estrogen-dependent, chronic inflammatory, and annoying symptoms, which inflicts about 10% reproductive-age women. The diagnosis of endometriosis mainly depends on pathological examination after surgical resection while the pathogenesis of EMS is not clear enough. Surgical resection and drug therapy (including painkillers and hormone therapy, especially gonadotropin-releasing hormone analogs, GnRH-a) are widely used, but they are expensive and have many side effects. There are few studies on vaginal microorganisms in women with endometriosis. We collected vaginal secretions from women with EMS confirmed by pathology and demonstrated that they were different from that of healthy women by 16s rRNA high-throughput sequencing. Additionally, we established the EMS model in female mice by intraperitoneally injecting fragments from donor mice (3-week growth). Then, the mice were treated with mixed antibiotics (vagina) and NF-κB signaling pathway inhibitors (intraperitoneal injection), respectively. The result suggested that the ectopic lesions were inhibited. In addition, inflammatory cytokines IL-1β, IL-6, and TNF-α in peritoneal fluid, cell proliferation marker ki-67, and macrophage marker Iba-1 in ectopic lesions decreased significantly from that of mock mice. We also observed similar results as above by vaginal microbiota transplantation (VMT) and subcutaneous injection of leuprorelin acetate (LA, one of GnRH-a) for mice with EMS. These results showed that vaginal use of antibiotics or VMT is helpful to treat endometriosis in mice. However, due to the great difference between human and mouse vaginal microbiota, its mechanism and clinical transformation application still need to be further studied in the future.

Keywords: NF-κB signaling pathway; endometriosis; high-throughput sequencing; pathogenesis; vaginal microbiota.