Intramyocardial variability in integrated backscatter: effects of coronary occlusion and reperfusion

Circulation. 1987 Feb;75(2):436-42. doi: 10.1161/01.cir.75.2.436.

Abstract

The present study was undertaken to characterize regional myocardial alterations of reflected ultrasound during the cardiac cycle in normal, ischemic, and postischemic reperfused myocardium. Time-averaged integrated backscatter (IB) and cardiac cycle-dependent amplitude modulation were measured from subepicardial, midmyocardial, and subendocardial regions of the left ventricular apex and the midportion of the right ventricular free wall under normal conditions (n = 5), after 1 hr of 100% acute left anterior descending (LAD) occlusion (n = 8), and after 15 min LAD occlusion plus 120 min reperfusion (n = 5) in anesthetized, ventilated open-chest dogs. A significant increase in time-averaged IB was observed in the subepicardium, the midmyocardium, and the subendocardium during ischemia and reperfusion, but there was no intramyocardial variability. Cardiac cycle-dependent amplitude modulation of IB was significantly higher in the normal subendocardium than in the subepicardium (4.3 +/- 0.6 vs 2.9 +/- 0.8 dB, p less than .01) and midmyocardium (2.8 +/- .05 dB, p less than .01). This transmural gradient in amplitude modulation was abolished during ischemia and reperfusion. We conclude that cardiac cycle-dependent amplitude modulation in IB has a transmural dependence in the normal myocardium and this is abolished during acute myocardial ischemia.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Coronary Disease / diagnosis*
  • Dogs
  • Female
  • Heart / anatomy & histology
  • Male
  • Myocardial Contraction
  • Myocardium / pathology
  • Ultrasonography*