Effects of miR-363 on the Biological Activities of Eutopic Endometrial Stromal Cells in Endometriosis

Biomed Res Int. 2022 Mar 26:2022:7663379. doi: 10.1155/2022/7663379. eCollection 2022.

Abstract

EMs is a kind of benign disease with certain malignant behaviors. The adhesion, invasive growth, and angiogenesis of ectopic endometrial cells are the pathological basis of EMs occurrence, but its etiology and pathogenesis have not been completely illustrated yet. In our research, we aim to investigate the role of miR-363 in the pathogenesis of endometriosis. Real-time quantitative PCR was used to detect the expression of miR-363 before and after ESC/NSC transfection. CCK-8, flow cytometry, and transwell assay were used to detect the effect of the miR-363 expression on cell proliferation, apoptosis, and invasion. The effects of the miR-363 expression on the contents of Fas/APO-1 and ICAM-1 in cell culture supernatant were detected by ELISA. qRT-PCR and WB assay were used to detect the effects of the miR-363 expression on the mRNA and protein expression levels of ICAM-1, MMP-7, and VEGF in ESC. The increased expression of miR-363 could inhibit the proliferation and invasion of ESC, promote apoptosis, and inhibit the secretion of FAS/APO-1 and ICAM-1. The knockdown expression of miR-363 promoted proliferation and invasion of NSC, inhibited apoptosis, and promoted secretion of FAS/APO-1 and ICAM-1. VCAM-1, VEGF, and MMP-7 were detected in ESCs before transfection. The protein expression level was higher than that of NSCs. Compared with pretransfection, the protein levels of VCAM-1, VEGF, and MMP-7 in the M-363 group were significantly downregulated. The downregulated expression of miR-363 was associated with a stronger cell proliferation ability, a lower cell apoptosis rate, and a stronger ESC. Migration is associated with invasiveness, proliferation, angiogenesis, and immune escape. The low expression of miR-363 promotes endogenesis through posttranscriptional regulation of target genes VCAM-1, MMP-7, and VEGF. The differential expression of miR-363 between ESC and NSC may be an important factor in the many biological differences between ESC and NSC.

Publication types

  • Retracted Publication

MeSH terms

  • Cell Movement / genetics
  • Cell Proliferation / genetics
  • Endometriosis* / pathology
  • Endometrium / cytology
  • Endometrium / pathology
  • Epithelial Cells* / metabolism
  • Female
  • Humans
  • MicroRNAs* / metabolism
  • Stromal Cells / pathology

Substances

  • MIRN363 microRNA, human
  • MicroRNAs