SNR-Enhanced, Rapid Electrical Conductivity Mapping Using Echo-Shifted MRI

Tomography. 2022 Feb 5;8(1):376-388. doi: 10.3390/tomography8010031.

Abstract

Magnetic resonance electrical impedance tomography (MREIT) permits high-spatial resolution electrical conductivity mapping of biological tissues, and its quantification accuracy hinges on the signal-to-noise ratio (SNR) of the current-induced magnetic flux density (Bz). The purpose of this work was to achieve Bz SNR-enhanced rapid conductivity imaging by developing an echo-shifted steady-state incoherent imaging-based MREIT technique. In the proposed pulse sequence, the free-induction-decay signal is shifted in time over multiple imaging slices, and as a result is exposed to a plurality of injecting current pulses before forming an echo. Thus, the proposed multi-slice echo-shifting strategy allows a high SNR for Bz for a given number of current injections. However, with increasing the time of echo formation, the Bz SNR will also be compromised by T2*-related signal loss. Hence, numerical simulations were performed to evaluate the relationship between the echo-shifting and the Bz SNR, and subsequently to determine the optimal imaging parameters. Experimental studies were conducted to evaluate the effectiveness of the proposed method over conventional spin-echo-based MREIT. Compared with the reference spin-echo MREIT, the proposed echo-shifting-based method improves the efficiency in both data acquisition and current injection while retaining the accuracy of conductivity quantification. The results suggest the feasibility of the proposed MREIT method as a practical means for conductivity mapping.

Keywords: echo-shifted MRI; electrical conductivity; magnetic resonance electrical impedance tomography (MREIT); magnetic resonance imaging (MRI); steady-state incoherent imaging.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Electric Conductivity
  • Electric Impedance
  • Magnetic Resonance Imaging* / methods
  • Phantoms, Imaging
  • Signal-To-Noise Ratio