Moment-Based Parameter Estimation for the Γ-Parameterized TWDP Model

Sensors (Basel). 2022 Jan 20;22(3):774. doi: 10.3390/s22030774.

Abstract

Two-wave with diffuse power (TWDP) is one of the most promising models for description of a small-scale fading effects in the emerging wireless networks. However, its conventional parameterization based on parameters K and Δ is not in line with model's underlying physical mechanisms. Accordingly, in this paper, we first identified anomalies related to usage of conventional TWDP parameterization in moment-based estimation, showing that the existing Δ-based estimators are unable to provide meaningful estimates in some channel conditions. Then, we derived moment-based estimators of recently introduced physically justified TWDP parameters K and Γ and analyzed their performance through asymptotic variance (AsV) and Cramer-Rao bound (CRB) metrics. Performed analysis has shown that Γ-based estimators managed to overcome all anomalies observed for Δ-based estimators, simultaneously improving the overall moment-based estimation accuracy.

Keywords: Cramer–Rao bound; TWDP fading channel; asymptotic variance; moment-based estimation.