White-Light-Driven Resonant Emission from a Monolayer Semiconductor

Adv Mater. 2022 May;34(18):e2103527. doi: 10.1002/adma.202103527. Epub 2022 Mar 31.

Abstract

Resonant emission in photonic structures is very useful to construct all-photonic circuits for optical interconnects and quantum computing. Optical generation of most resonant-emitting modes in photonic structures is obtained by coherent pumping rather than incoherent illumination. Particularly, the development of white-light- or even solar-powered on-chip light sources remains challenging but is very attractive in view of the much facile availability of these incoherent excitation sources. Here, net resonant emission from a monolayer semiconductor is demonstrated under simulated solar illumination by a white-light-emitting diode. The device is formed by embedding a 2D gain medium into a planar microcavity on a silicon wafer, which is compatible with the prevailing on-chip photonic technology. Coherent and white-light excitation sources are, respectively, selected for optical pumping, where the output light in two cases exhibits well-consistent resonant wavelength, linewidth, polarization, location, and Gaussian-beam profile. The fundamental TEM00 mode behaves as a doublet emission, resulting from anisotropy-induced non-degenerate states with orthogonal polarizations. The extraordinary spectral flipping is attributed to the competitive interplay of resonant absorption and emission. This work paves a way toward white-light or solar-powered state-of-the-art photonic applications at the chip scale.

Keywords: 2D semiconductors; resonant emission; white-light pumping.