Unprecedented Dual Role of Polyaniline for Enhanced Pseudocapacitance of Cobalt-Iron Layered Double Hydroxide

Macromol Rapid Commun. 2022 Apr;43(7):e2100905. doi: 10.1002/marc.202100905. Epub 2022 Feb 9.

Abstract

Creating nanosized pores in layered materials can increase the abundant active surface area and boost potential applications of energy storage devices. Herein, a unique synthetic strategy based on polyaniline (PANI) doped 2D cobalt-iron layered double hydroxide (CoFe-LDH/P) nanomaterials are designed, and the formation of pores at low temperature (80 °C) is developed. It is found that the optimized concentration of PANI creates the nanopores on the CoFe-LDH nanosheets among all other polymers. The well-ordered pores of CoFe-LDH/P allow the high accessibility of the redox-active sites and promote effective ion diffusion. The optimized CoFe-LDH/P2 cathode reveals a specific capacitance 1686 (1096 Cg-1 ) and 1200 Fg-1 (720 Cg-1 ) at 1 and 30 Ag-1 respectively, a high rate capability (71.2%), and a long cycle life (98% over 10 000 cycles) for supercapacitor applications. Charge storage analysis suggests that the CoFe-LDH/P2 electrode displays a capacitive-type storage mechanism (69% capacitive at 1 mV s-1 ). Moreover, an asymmetric aqueous supercapacitor (CoFe-LDH/P2//AC) is fabricated, delivering excellent energy density (75.9 Wh kg-1 at 1124 W kg-1 ) with outstanding stability (97.5%) over 10 000 cycles. This work opens a new avenue for designing porous 2D materials at low temperature for aqueous energy storage devices.

Keywords: layered double hydroxide; polyaniline; porous; pseudocapacitance; supercapacitors.

MeSH terms

  • Aniline Compounds / chemistry
  • Cobalt* / chemistry
  • Hydroxides
  • Iron*

Substances

  • Aniline Compounds
  • Hydroxides
  • polyaniline
  • Cobalt
  • hydroxide ion
  • Iron