A unified thermodynamic fouling mechanism based on forward osmosis membrane unique properties: An asymmetric structure and reverse solute diffusion

Sci Total Environ. 2022 Feb 20:808:152219. doi: 10.1016/j.scitotenv.2021.152219. Epub 2021 Dec 7.

Abstract

Fouling mechanism of the forward osmosis membrane, which was peculiarly featured by the asymmetric membrane structure and reverse solute diffusion, was investigated at the molecular level and from the energy perspective. Two noteworthy fouling behaviors were observed in batch fouling tests conducted in AL-FS mode (active layer facing feed solution) and AL-DS mode (active layer facing draw solution) after filtering foulants with identical volume: 1) after filtering 100 mL of foulants, the flux decline rate in AL-DS mode was 1.78 times faster than that in AL-FS mode, but the flux decline behaviors of the two modes were similar in the subsequent filtration stages; 2) although the foulant layer weight of the same mode increased linearly in middle and late stages, the flux loss rate was distinctly different. Thermodynamic analysis indicated that the attractive interaction energy between the foulants and the support layer was about 5 times higher than that between the foulants and the active layer, well interpreting the higher flux decline rate of AL-DS mode in initial stage. Meanwhile, a non-invasive microscope observed that the structure of the fouling layer remarkably changed from loose to dense in the middle stage, and stabilized in the late stage. Furthermore, quantum chemistry calculation proved that the reverse diffusion of NaCl brought alginate molecular chains closer, whereas the distance between them tended to be constant as the continuous increase of NaCl. Based on these findings, the thermodynamic fouling mechanism proposed by combining the structure change process of the fouling layer with Flory-Huggins lattice theory satisfactorily interpreted the noteworthy fouling behaviors caused by reverse NaCl diffusion in middle and late stages. The revealed fouling mechanism unifies the adhesion and filtration behaviors related to the unique properties of FO membrane, deepening understanding of membrane fouling in the dynamic and complex ternary system of the FO process.

Keywords: Asymmetric membrane structure; Density functional theory simulation; Forward osmosis membrane fouling; Reverse solute diffusion; Thermodynamic analysis.

MeSH terms

  • Filtration
  • Membranes, Artificial*
  • Osmosis
  • Solutions
  • Thermodynamics
  • Water Purification*

Substances

  • Membranes, Artificial
  • Solutions