Lung Ablation with Irreversible Electroporation Promotes Immune Cell Infiltration by Sparing Extracellular Matrix Proteins and Vasculature: Implications for Immunotherapy

Bioelectricity. 2021 Sep 1;3(3):204-214. doi: 10.1089/bioe.2021.0014. Epub 2021 Sep 9.

Abstract

Background: This study investigated the sparing of the extracellular matrix (ECM) and blood vessels at the site of lung irreversible electroporation (IRE), and its impact on postablation T cell and macrophage populations. Materials and Methods: Normal swine (n = 8) lung was treated with either IRE or microwave ablation (MWA), followed by sacrifice at 2 and 28 days (four animals/timepoint) after treatment. En bloc samples of ablated lung were stained for blood vessels (CD31), ECM proteins (Collagen, Heparan sulfate, and Decorin), T cells (CD3), and macrophages (Iba1). Stained slides were analyzed with an image processing software (ImageJ) to count the number of positive staining cells or the percentage area of tissue staining for ECM markers, and the statistical difference was evaluated with Student's t-test. Results: Approximately 50% of the blood vessels and collagen typically seen in healthy lung were evident in IRE treated samples at Day 2, with complete destruction within MWA treated lung. These levels increased threefold by Day 28, indicative of post-IRE tissue remodeling and regeneration. Decorin and Heparan sulfate levels were reduced, and it remained so through the duration of observation. Concurrently, numbers of CD3+ T cells and macrophages were not different from healthy lung at Day 2 after IRE, subsequently increasing by 2.5 and 1.5-fold by Day 28. Similar findings were restricted to the peripheral inflammatory rim of MWA samples, wherein the central necrotic regions remained acellular through Day 28. Conclusion: Acute preservation of blood vessels and major ECM components was observed in IRE treated lung at acute time points, and it was associated with the increased infiltration and presence of T cells and macrophages, features that were spatially restricted in MWA treated lung.

Keywords: immune response; irreversible electroporation; microwave ablation.