Effective connectivity of brain networks controlling human thermoregulation

Brain Struct Funct. 2022 Jan;227(1):299-312. doi: 10.1007/s00429-021-02401-w. Epub 2021 Oct 4.

Abstract

Homeostatic centers in the mammalian brainstem are critical in responding to thermal challenges. These centers play a prominent role in human thermoregulation, but humans also respond to thermal challenges through behavior modification. Behavioral modifications are presumably sub served by interactions between the brainstem and interoceptive, cognitive and affective elements in human brain networks. Prior evidence suggests that interoceptive regions such as the insula, and cognitive/affective regions such as the orbitofrontal cortex and anterior cingulate cortex are crucial. Here we used dynamic causal modeling (DCM) to discover likely generative network architectures and estimate changes in the effective connectivity between nodes in a hierarchically organized thermoregulatory network (homeostatic-interoceptive-cognitive/affective). fMRI data were acquired while participants (N = 20) were subjected to a controlled whole body thermal challenge that alternatingly evoked sympathetic and parasympathetic responses. Using a competitive modeling framework (ten competing modeling architectures), we demonstrated that sympathetic responses (evoked by whole-body cooling) resulted in more complex network interactions along two ascending pathways: (i) homeostatic interoceptive and (ii) homeostatic cognitive/affective. Analyses of estimated connectivity coefficients demonstrated that sympathetic responses evoked greater network connectivity in key pathways compared to parasympathetic responses. These results reveal putative mechanisms by which human thermoregulatory networks evince a high degree of contextual sensitivity to thermoregulatory challenges. The patterns of the discovered interactions also reveal how information propagation from homeostatic regions to both interoceptive and cognitive/affective regions sub serves the behavioral repertoire that is an important aspect of thermoregulatory defense in humans.

Keywords: Behavioral thermoregulation; Dynamic causal modeling; Effective connectivity; Functional MRI; Sympathetic brain network.

MeSH terms

  • Body Temperature Regulation
  • Brain Mapping*
  • Brain* / diagnostic imaging
  • Cerebral Cortex
  • Humans
  • Magnetic Resonance Imaging
  • Neural Pathways / diagnostic imaging