Synergistically homogeneous-heterogeneous Fenton catalysis of trace copper ion and g-C3N4 for degradation of organic pollutants

Water Sci Technol. 2021 Sep;84(5):1090-1102. doi: 10.2166/wst.2021.296.

Abstract

Using the bulk g-C3N4 as a precursor, four g-C3N4 nanosheets were further prepared by ultrasonic, thermal, acid, and alkali exfoliation. The structures of these materials were characterized by various techniques such as X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The synergistical Fenton catalysis of these materials with Cu2+ was evaluated by using rhodamine B as a simulated organic pollutant. The results showed that there existed a significant synergistical Fenton catalysis between Cu2+ and g-C3N4. This synergistic effect can be observed even when the concentration of Cu2+ was as low as 0.064 mg L-1. The properties of g-C3N4 strongly influenced the catalytic activity of the Cu2+/g-C3N4 system. The coexistent of Cu2+ and the alkali exfoliated g-C3N4 showed the best catalytic activity. Hydroxyl radicals as oxidizing species were confirmed in the Cu2+/g-C3N4 system by electron paramagnetic resonance spectra. The synergistic catalysis may be attributed to the easier reduction of Cu2+ adsorbed on the g-C3N4. This study provided an excellent Fenton catalytic system, and partly solved the rapid deactivation of heterogeneous Fenton catalysts caused by the leaching of metal ions.

MeSH terms

  • Catalysis
  • Copper*
  • Environmental Pollutants*
  • Ions
  • X-Ray Diffraction

Substances

  • Environmental Pollutants
  • Ions
  • Copper