Bandgap of two-dimensional materials: Thorough assessment of modern exchange-correlation functionals

J Chem Phys. 2021 Sep 14;155(10):104103. doi: 10.1063/5.0059036.

Abstract

The density-functional theory (DFT) approximations that are the most accurate for the calculation of bandgap of bulk materials are hybrid functionals, such as HSE06, the modified Becke-Johnson (MBJ) potential, and the GLLB-SC potential. More recently, generalized gradient approximations (GGAs), such as HLE16, or meta-GGAs, such as (m)TASK, have also proven to be quite accurate for the bandgap. Here, the focus is on two-dimensional (2D) materials and the goal is to provide a broad overview of the performance of DFT functionals by considering a large test set of 298 2D systems. The present work is an extension of our recent studies [T. Rauch, M. A. L. Marques, and S. Botti, Phys. Rev. B 101, 245163 (2020); Patra et al., J. Phys. Chem. C 125, 11206 (2021)]. Due to the lack of experimental results for the bandgap of 2D systems, G0W0 results were taken as reference. It is shown that the GLLB-SC potential and mTASK functional provide the bandgaps that are the closest to G0W0. Following closely, the local MBJ potential has a pretty good accuracy that is similar to the accuracy of the more expensive hybrid functional HSE06.