Generating Stable Spin Squeezing by Squeezed-Reservoir Engineering

Phys Rev Lett. 2021 Aug 20;127(8):083602. doi: 10.1103/PhysRevLett.127.083602.

Abstract

As a genuine many-body entanglement, spin squeezing (SS) can be used to realize the highly precise measurement beyond the limit constrained by classical physics. Its generation has attracted much attention recently. It was reported that N two-level systems (TLSs) located near a one-dimensional waveguide can generate SS by using the mediation effect of the waveguide. However, a coherent driving on each TLS is used to stabilize the SS, which raises a high requirement for experiments. We here propose a scheme to generate stable SS resorting to neither the spin-spin coupling nor the coherent driving on the TLSs. Incorporating the mediation role of the common waveguide and the technique of squeezed-reservoir engineering, our scheme exhibits the advantages over previous ones in the scaling relation of the SS parameter with the number of the TLSs. The long-range correlation feature of the generated SS along the waveguide in our scheme may endow it with certain superiority in quantum sensing, e.g., improving the sensing efficiency of spatially unidentified weak magnetic fields.