Send to:

Choose Destination
See comment in PubMed Commons below
Proteins. 1987;2(3):225-35.

Modeling the biochemical differences between rabbit muscle and human liver phosphorylase.

Author information

  • 1Department of Biochemistry and Biophysics, University of California 94143.


Glycogen phosphorylases catalyze the regulated breakdown of glycogen to glucose-1-phosphate. In mammals, glycogen phosphorylase occurs in three different isozymes called liver, muscle, and brain after the tissues in which they are preferentially expressed. The muscle isozyme binds and is activated cooperatively by AMP. In contrast, the liver enzyme binds AMP noncooperatively and is poorly activated. The amino acid sequence of human liver phosphorylase is 80% identical with rabbit muscle phosphorylase, and those residues which contact AMP are conserved. Using computer graphics software, we replaced side chains of the known rabbit muscle structure with those of human liver phosphorylase and interpreted the effects of these changes in order to account for the biochemical differences between them. We have identified two substitutions in liver phosphorylase potentially important in altering the cooperative binding and activation of this isozyme by AMP.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk