Nitrogen removal performance of sulfur autotrophic denitrification under different S2O32- additions using isotopic fractionation of nitrogen and oxygen

Sci Total Environ. 2021 Nov 10:794:148794. doi: 10.1016/j.scitotenv.2021.148794. Epub 2021 Jul 1.

Abstract

The dual isotope fractionation of nitrogen (N) and oxygen (O) is an effective way to track the transformation of NO3--N in biological denitrification process. The Sulfur autotrophic denitrification combined with the different concentrations of S2O32- was investigated using the dual isotope fractionation of nitrogen (N) and oxygen (O) to reveal the nitrogen removal mechanism of the activated sludge. Based on successful autotrophic denitrification incubation, the modified Logistic model responded to the short-term effects of S2O32- addition on NO3--N removal and SO42- generation. Under the S2O32- addition of 0.5, 1, 2 and 4 times of the incubation stage (49.29 mg/L-394.32 mg/L), the fractionation effect of N in NO3--N (15εNO3) decreased from 8.74 ± 1.81‰ to 2.08 ± 0.06‰, and the fractionation effect of O in NO3--N (18εNO3) declined from 11.34 ± 0.46‰ to 5.48 ± 0.46‰. The 15εNO3/18εNO3 was maintained at 0.46-0.94, indicating a negative correlation between addition amount and isotope effect, and the addition of high concentrations of S2O32- was not suitable for system stabilization. Moreover, the 18O-labeled H2O (δ18OH2O) tests significantly proved the presence of O exchange between NO2--N/NO3--N and H2O (67%/97%) during the nitrogen removal process, while the reoxidation of NO2--N was explored in the autotrophic denitrification. The kinetic models coupled with isotope fractionation effectively revealed the nitrogen removal characteristics in the autotrophic denitrification systems, and verified the difference between the activated sludge-based wastewater treatment process and the natural ecosystem.

Keywords: Dual isotopes fractionation; Reoxidation; Short-term effects; Sulfur autotrophic denitrification; The modified Logistic model.

MeSH terms

  • Bioreactors
  • Denitrification*
  • Ecosystem
  • Nitrates
  • Nitrogen*
  • Oxygen
  • Sulfur

Substances

  • Nitrates
  • Sulfur
  • Nitrogen
  • Oxygen