Carbon xerogels combined with nanotubes as solid-phase extraction sorbent to determine metaflumizone and seven other surface and drinking water micropollutants

Sci Rep. 2021 Jul 5;11(1):13817. doi: 10.1038/s41598-021-93163-2.

Abstract

Carbon xerogels (CXs) were synthesized by polycondensation of resorcinol and formaldehyde, followed by thermal annealing, and subjected to hydrothermal oxidation. Solid-phase extraction (SPE) cartridges were filled with CXs and tested for extraction of metaflumizone and other seven environmental micropollutants (acetamiprid, atrazine, isoproturon, methiocarb, carbamazepine, diclofenac, and perfluorooctanesulfonic acid) before chromatographic analysis. The recoveries obtained with the pristine CX were low for most analytes, except for metaflumizone (69 ± 5%). Moreover, it was concluded that the adsorption/desorption process of the micropollutants performed better on CXs with a less acidic surface (i.e., pristine CX). Thus, cartridges were prepared with pristine CX and multi-walled carbon nanotubes (MWCNTs) in a multi-layer configuration. This reusable cartridge was able to simultaneously extract the eight micropollutants and was used to validate an analytical methodology based on SPE followed by ultra-high performance liquid chromatography-tandem mass spectrometry. A widespread occurrence of 6/8 target compounds was observed in surface water collected in rivers supplying three drinking water treatment plants and in the resulting drinking water at the endpoint of each distribution system. Therefore, the first study employing CXs and MWCNTs as sorbent in multi-layer SPE cartridges is herein reported as a proof of concept for determination of multi-class water micropollutants.

Publication types

  • Research Support, Non-U.S. Gov't