Diabetes and inflammatory diseases: An overview from the perspective of Ca2+/3'-5'-cyclic adenosine monophosphate signaling

World J Diabetes. 2021 Jun 15;12(6):767-779. doi: 10.4239/wjd.v12.i6.767.

Abstract

A large amount of evidence has supported a clinical link between diabetes and inflammatory diseases, e.g., cancer, dementia, and hypertension. In addition, it is also suggested that dysregulations related to Ca2+ signaling could link these diseases, in addition to 3'-5'-cyclic adenosine monophosphate (cAMP) signaling pathways. Thus, revealing this interplay between diabetes and inflammatory diseases may provide novel insights into the pathogenesis of these diseases. Publications involving signaling pathways related to Ca2+ and cAMP, inflammation, diabetes, dementia, cancer, and hypertension (alone or combined) were collected by searching PubMed and EMBASE. Both signaling pathways, Ca2+ and cAMP signaling, control the release of neurotransmitters and hormones, in addition to neurodegeneration, and tumor growth. Furthermore, there is a clear relationship between Ca2+ signaling, e.g., increased Ca2+ signals, and inflammatory responses. cAMP also regulates pro- and anti-inflammatory responses. Due to the experience of our group in this field, this article discusses the role of Ca2+ and cAMP signaling in the correlation between diabetes and inflammatory diseases, including its pharmacological implications. As a novelty, this article also includes: (1) A timeline of the major events in Ca2+/cAMP signaling; and (2) As coronavirus disease 2019 (COVID-19) is an emerging and rapidly evolving situation, this article also discusses recent reports on the role of Ca2+ channel blockers for preventing Ca2+ signaling disruption due to COVID-19, including the correlation between COVID-19 and diabetes.

Keywords: COVID-19; Ca2+ channel blockers; Ca2+/3'-5'-cyclic adenosine monophosphate signaling; Cancer; Dementia; Diabetes; Hypertension; Neurodegeneration; Pharmacotherapy.

Publication types

  • Review