Edaravone attenuates smoke inhalation injury in rats by the Notch pathway

Am J Transl Res. 2021 May 15;13(5):4712-4718. eCollection 2021.

Abstract

Objective: To explore the protective effect of inhaled edaravone (EDA) on inflammation, oxidative stress (OS), and pulmonary function (PF) in rats after smoke inhalation injury (SII), as well as its mechanisms.

Methods: Twenty-four rats were designated as group A (model group), group B (EBA prevention group), group C (low-dose group) and group D (high-dose group) (n=6 for each group). SII models were induced in all groups. After successful modeling, rats in each group were treated accordingly. After 6 hours of modeling, assessments of PF, oxygenation index (OI), inflammatory cytokine expression, oxidative stress index (OSI), wet/dry weight ratio (W/D), total lung water (TLW), and the expression of Notch markers were carried out.

Results: Compared with group A, the remaining groups had higher peak respiratory velocity (PEF), forced expiratory volume in the first second (FEV1), FEV1/forced vital capacity (FVC) and OI, as well as lower W/D and TLW; levels of serum superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), and interleukin (IL)-6 decreased, and those of serum myeloperoxidase (MPO) and IL-10 increased. Levels of PEF, FEV1, FVC, OI, MPO, and IL-10 were higher in group A than in groups C and D, and those of W/D, TLW, SOD, MDA, TNF-α, and IL-6 were lower. Levels of Notch markers NICD, Hes1 and Hes5 were downregulated in groups B, C, and D, and in group B were lower than those in groups C and D.

Conclusion: Inhaled EDA is able to alleviate inflammation and OS and effectively improve PF in rats after SII, possibly by inhibiting the Notch pathway.

Keywords: Edaravone; Notch pathway; smoke inhalation injury.