MRI Highly Accelerated Wave-CAIPI T1-SPACE versus Standard T1-SPACE to detect brain gadolinium-enhancing lesions at 3T

J Neuroimaging. 2021 Sep;31(5):893-901. doi: 10.1111/jon.12893. Epub 2021 Jun 3.

Abstract

Background and purpose: High-resolution three-dimensional (3D) post-contrast imaging of the brain is essential for comprehensive evaluation of inflammatory, neoplastic, and neurovascular diseases of the brain. 3D T1-weighted spin-echo-based sequences offer increased sensitivity for the detection of enhancing lesions but are relatively prolonged examinations. We evaluated whether a highly accelerated Wave-controlled aliasing in parallel imaging (Wave-CAIPI) post-contrast 3D T1-sampling perfection with application-optimized contrasts using different flip angle evolutions (T1-SPACE) sequence (Wave-T1-SPACE) was noninferior to the standard high-resolution 3D T1-SPACE sequence for visualizing enhancing lesions with comparable diagnostic quality.

Methods: One hundred and three consecutive patients were prospectively evaluated with a standard post-contrast 3D T1-SPACE sequence (acquisition time [TA] = 4 min 19 s) and an optimized Wave-CAIPI 3D T1-SPACE sequence (TA = 1 min 40 s) that was nearly three times faster than the standard sequence. Two blinded neuroradiologists performed a head-to-head comparison to evaluate the visualization of enhancing pathology, perception of artifacts, and overall diagnostic quality. A 15% margin was used to test whether post-contrast Wave-T1-SPACE was noninferior to standard T1-SPACE.

Results: Wave-T1-SPACE was noninferior to standard T1-SPACE for delineating parenchymal and meningeal enhancing pathology (p < 0.01). Wave-T1-SPACE showed marginally higher background noise compared to the standard sequence and was noninferior in the overall diagnostic quality (p = 0.03).

Conclusions: Our findings show that Wave-T1-SPACE was noninferior to standard T1-SPACE for visualization of enhancing pathology and overall diagnostic quality with a three-fold reduction in acquisition time compared to the standard sequence. Wave-T1-SPACE may be used to accelerate 3D post-contrast T1-weighted spin-echo imaging without loss of clinically important information.

Keywords: MRI; Wave-CAIPI; acceleration; brain; parallel imaging.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Artifacts
  • Brain / diagnostic imaging
  • Gadolinium*
  • Humans
  • Imaging, Three-Dimensional*
  • Magnetic Resonance Imaging

Substances

  • Gadolinium