Transparent Ion-Exchange Membrane Exhibiting Intense Emission under a Specific pH Condition Based on Polypyridyl Ruthenium(II) Complex with Two Imidazophenanthroline Groups

Membranes (Basel). 2021 May 27;11(6):400. doi: 10.3390/membranes11060400.

Abstract

The development and the photophysical behavior of a transparent ion-exchange membrane based on a pH-sensitive polypyridyl ruthenium(II) complex, [(bpy)2RuII(H2bpib)RuII(bpy)2](ClO4)4 (bpy = 2,2'-bipyridine, H2bpib = 1,4-bis([1,10]phenanthroline[5,6-d]-imidazol-2-yl)benzene), are experimentally and theoretically reported. The emission spectra of [(bpy)2RuII(H2bpib)RuII(bpy)2]@Nafion film were observed between pH 2 and pH 11 and showed the highest relative emission intensity at pH 5 (λmaxem = 594.4 nm). The relative emission intensity of the film significantly decreased down to 75% at pH 2 and 11 compared to that of pH 5. The quantum yields (Φ) and lifetimes (τ) showed similar correlations with respect to pH, Φ = 0.13 and τ = 1237 ns at pH 5, and Φ = 0.087 and τ = 1014 ns and Φ = 0.069 and τ = 954 ns at pH 2 and pH 11, respectively. These photophysical data are overall considerably superior to those of the solution, with the radiative- (kr) and non-radiative rate constants (knr) at pH 5 estimated to be kr = 1.06 × 105 s-1 and knr = 7.03 × 105 s-1. Density functional theory calculations suggested the contribution of ligand-to-ligand- and intraligand charge transfer to the imidazolium moiety in Ru-H3bpib species, implying that the positive charge on the H3bpib ligand works as a quencher. The Ru-Hbpib species seems to enhance non-radiative deactivation by reducing the energy of the upper-lying metal-centered excited state. These would be responsible for the pH-dependent "off-on-off" emission behavior.

Keywords: Nafion membrane; polypyridyl ruthenium(II) complex; transparent emitter.